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Abstract—A 3-D multi-resolution analysis procedure similar to the
FDTD method is derived using Haar-wavelets. The method is validated
by analyzing several 3-D rectangular resonators with inhomogeneous
dielectric loading. It is also applied to the analyses of microstrip low
pass filters with open boundaries, and their S-parameters are extracted.
The results are compared with those of the traditional FDTD method.

I. INTRODUCTION

Multi-resolution time-domain (MRTD) techniques using
Battle-Lemarie wavelets [1] [2] and Haar wavelets [3] have
recently been applied to electromagnetic analysis, and it has
been pointed out that these techniques require less computa-
tional effort than other time domain techniques.

This paper describes the derivation of an FDTD-like
multi-resolution technique based on Haar-wavelets. It is for-
mulated in three-dimensional space and time using 3-D com-
binations of Haar scaling and wavelet functions at one scal-
ing level, and can handle inhomogeneous dielectric materi-
als. While the accuracy of this new procedure and the mem-
ory required are similar to those of the conventional FDTD
for the same number of degrees of freedom, it is twice as
fast.

To validate the new method, several rectangular cavities
with inhomogeneous dielectric loading have been analyzed,
and results were compared with analytical results (when
available) and data obtained by conventional FDTD analy-
sis having the same number of degrees of freedom, which
means that the same amount of computer memory is required
in both methods.

Furthermore, the method is applied to the analysis of mi-
crostrip low-pass filters with open boundaries, and their S-
parameters are extracted. This demonstrates the suitabil-
ity of the method for solving practical microwave problems.
The computer resources required in the proposed method are
also discussed and compared with those of the conventional
FDTD method.

II. FORMULATION

A. 3-D basis functions and time iterative difference equa-
tions

The electric and magnetic field components of Maxwell’s
curl equations in Cartesian coordinates can be expanded in
orthonormal bases of eight three-dimensional combinations
of the Haar scaling (¢) and wavelet (1) functions [4] having
the support or the width of the function equal to the spatial
discretization interval Az, Ay and Az as follows
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where the notations are consistent with those used in [5] ex-
cept that the field value WEC"Ek with {,7,& = ¢, denotes
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the expansion coefficients in terms of the Haar scaling and
wavelet functions at time step n and spatial node %, j, k along
the z—,y— and z—directions. The function h,(t) is the
unit amplitude rectangular pulse function with the support
of t, — At/2 <t < t, + At/2 where At denotes the time
discretization interval.

Similarly, the remaining field components can be ex-
panded in orthonormal basis functions(1). Subsequently,
each component is substituted in Maxwell’s equations, and
the resulting expressions are tested with the product of the
spatial basis functions with the pulse function in time, yield-
ing time iterative difference equations. The equations are
the same as those appearing in the traditional FDTD method.
They are computed for each basis function independently.

B. 3-D boundary conditions

As discussed in [3], the basis functions do not couple
at the inner computational nodes, but only at the boundary
and excitation nodes. Therefore the electric and magnetic
wall conditions are implemented by combining scaling and
wavelet functions at the boundaries, so that the tangential
electric fields at the boundaries equal to zero. For example,
to implement the electric wall condition at z = 0 (¢ = 0),
the three-dimensional Haar basis functions are divided into
four pairs as follows:
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Then, at every time step n the tangential electric fields E,
and E, at the boundary are set to zero by selecting the coef-
ficients of the pair basis functions (3) as
1
§tEgjk = ”ErEgjk = Z(%Efjk +$5E{ljk)’ E=y,z. @)

At T = Zyoe (| = imaz), with the same pairs, the coeffi-
cients of the basis functions are given by

1
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Similarly, the boundary conditions at y = 0, ymaz and z =
0, Zmaz can be derived. Equations (4) and (5) are computed
for the coefficients of all basis functions.

C. Sampling of the field value

In this proposed method, the space is discretized by using
the conventional Yee cell. However, each field node is di-
vided into eight sub-nodes as shown in Fig. 1. The sub-nodes
are named I, llu, lul, and so on, corresponding to the lower

or upper position with respect to the original field node along
the z-, y- and z-axes. The field values at the sub-nodes
E°P? with o,p,q = [, u can be calculated from the three-
dimensional Haar basis coefficients E$"¢ with (,n, & = ¢,
as
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Elul E¢1/J¢
ull Voo
gluu =4 gmpw ; (6)
Eulu E’¢'¢'¢'
Euul EV¥e
Fuuu Ew,bdnlz
with the basis transformation matrix
A=
+1 +1 +1 +1 +1 +1 +1 +1
+1 -1 41 41 -1 -1 +1 -1
+1 41 -1 41 -1 +1 -1 -1
1 +1 +1 41 -1 +1 -1 -1 -1
VBl 41 -1 -1 41 +1 -1 -1 +1
+1 -1 41 -1 -1 +1 -1 +1
+1 +1 -1 -1 -1 -1 41 +1
+1 -1 -1 -1 41 +1 +1 -1
0
Matrix A has an orthogonality property A~! = Af, where

At denotes the transpose matrix of A. Furthermore, it is
symmetric A" = A. Therefore, it has the important property
A7 =4, ®)

which allows an simple conversion between the field values
at the sub-nodes and the Haar basis coefficients.

d

X

Fig. 1. Eight sub-E-nodes form a standard FDTD node of E;;
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D. Perfect electric conductor conditions

For the perfect electric conductor condition, the tangen-
tial electric field along the conductor is set to zero by can-
celing the fields associated with the scaling and the wavelet
functions the axis of which is perpendicular to the conduc-
tor surface. In the case of a conductor lying on the zy-plane

and located at the sub-nodes Ej;, E%, B} and E}4, the
field valucs at the rest of the sub-nodes E”“ o, B

ijk> z]k ’
and are determined by the average between upper and

lower 31des of the sub-nodes. The sub-nodes on one side are
zero since they are lying on the conductor surface, thus,
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Hence, the expansion coefficients for the three-dimensional
basis functions for E, and E, components can be calculated
as
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withw = z,y.

E. Absorbing boundary conditions

Mur’s first order absorbing boundary condition (ABC)
has been implemented. The ABCs in the traditional FDTD
method can be implemented independently for each coeffi-
cient associated with the three-dimensional Haar basis func-
tion. The outgoing wave associated with each basis function
is absorbed independently by each associated ABC. There-
fore, the implementation in the new scheme is the same as
that in the traditional FDTD method.

III. VALIDATION AND COMPARISON WITH FDTD

Four rectangular cavities loaded with inhomogeneous di-
electric materials [6] were analyzed with the new multi-
resolution method. The dominant resonant frequencies were
compared with analytical values (when available) and those

(10)

obtained with the conventional FDTD method. The geome-
tries of the four cavities are shown in Fig. 2 and the results
are summarized in Table 1.

The time discretization interval was chosen to be 0.8 times
the Courant limit for both methods. Because the time dis-
cretization interval is twice that of the traditional FDTD
method, the computational time is approximately half that
of the traditional FDTD method for the same number of de-
grees of freedom.

The number of cells in the multi-resolution scheme is ap-
proximately one eighth of the number of FDTD celis so that
the number of degrees of freedom is the same for both meth-
ods. To discretize the geometry of the dielectric materials
accurately, nonuniform grids were incorporated in the cases
(b),(c) and (d). In the case of the homogeneous dielectric
cavity (a), the results obtained with both methods agreed
within £1%.

Fig. 2. Three-dimensional rectangular cavities analyzed in this study

IV. ANALYSIS OF MICROSTRIP LOW PASS FILTERS

The proposed method was applied to the analysis of the
microstrip low pass filter shown in Fig. 3 [7]. The Yee grid
lines used in the analysis are shown in the figure together
with the geometrical dimensions. To accurately discretize
the geometry of the circuit, nonuniform grids were incorpo-
rated.

The structure was also analyzed with the conventional
FDTD method under the condition described in [7]. The
analysis conditions for the proposed method are listed in Ta-
ble II together with those of the conventional FDTD method.

The discretization was such that the number of degrees
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TABLE I
NORMALIZED DOMINANT RESONANT FREQUENCIES OF RECTANGULAR

CAVITIES
it new conventional - .
cavity scheme EDTD % difference analytical
. .. (2) — (49)
(l) (ZZ) (ii)
(Yee cells)  (Yee cells)
(a) 0.07542 0.07486 +0.75 0.07511
(6x4x3) (12x8x6)
(b) 0.05302 0.05228 +1.42 0.05221
(5x4x3) (12x8x6)
©) 0.02764 0.02661 +3.87 —_—
(10x4x3) (20x8x6)
(d) 0.03834 0.03908 -1.89 —
(10x5x3) (20x8x6)

of freedom was the same for both methods. The calcula-
tion time for the proposed method was about half that of
the conventional FDTD method. This was due to the time
discretization interval being approximately twice that of the
conventional FDTD method, which was achieved by mak-
ing the minimum grid dimension approximately twice that
of the conventional FDTD method having the same number
of degrees of freedom.

TABLEII
ANALYSIS CONDITIONS FOR THE MICROSTRIP LOW PASS FILTER

new scheme conventional
FDTD
Yee cells 49x39x8 100x80x16
(non-uniform) (uniform)
computational time 11m 32.5s 20m 45.5s
time steps 2560 4000

The resulting S-parameters (S, S2;1) are shown in Fig. 4.
The results indicate good agreement between both methods,
except for slight deviations in the high frequency range over
16GHz and in the small signal range below -30dB.

V. CONCLUSIONS

A 3-D multi-resolution analysis procedure similar to the
FDTD method has been derived by using three-dimensional
Haar scaling and wavelet functions.

The resulting method has been tested and validated by
analyzing four inhomogeneously filled rectangular cavities.
The method has also been applied to the analysis of mi-
crostrip low pass filters. The resulting S-parameters are
in good agreement with those obtained with the conven-

19.8951(23) 2.540(3)
19.8951(23)

6.0960(7)
5.6896(7)
2.4384(3)

5.6896(7)

unit: mm(cells) 6.0960(7)

Fig. 3. Microstrip low pass filter configuration under investigation
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Fig. 4. Computed S-parameters ( .S11, S21 ) of the filter, — : proposed
method, - - - : conventional FDTD method

tional FDTD method. The calculation time for the proposed
method was approximately half that of the equivalent con-
ventional FDTD method.
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